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Barron (1) produced a proof of the Central Limit Theorem for real-valued IID
random variables, in the sense of convergence in relative entropy. Here, we
establish a similar result for independent real-valued random vectors, not
necessarily identically distributed. The main developments required are a gener-
alisation of De Bruijn’s identity, and various inequalities proposed in ref. 2.
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1. INTRODUCTION AND NOTATION

The Central Limit Theorem shows convergence to the multivariate normal
of normalised sums of random variables with fixed covariance. Since the
multivariate normal maximises information-theoretic entropy for fixed
covariance, we can therefore view the Central Limit Theorem as a ‘‘maxi-
mum entropy’’ result. This approach produced a proof of convergence in
the sense of relative entropy for IID real random vectors. (1) It also unites
our view of convergence on the real line with convergence to Haar measure
on compact groups, (7) which is also an entropy maximisation result.

In this paper, the result of ref. 1 is extended to independent, not
necessarily identical random vectors. Previously, Johnson (6) extended the
results to independent, not necessarily identical random variables. In this
case we require control over the covariance, as well as conditions which
correspond directly to those imposed in ref. 6. The central limit theorem
for independent random vectors was previously considered in ref. 3. This
paper follows a similar structure of argument, but uses weaker assump-
tions. The role and significance of entropy in Statistical Mechanics is well
established. Here, we only mention one possible application of our result:



absence of spontaneous magnetisation in 2D lattice models with contin-
uous symmetries. See refs. 5 and 12 and the bibliography there.

Throughout this paper, given an (n×n) matrix B=(Bij), |B| denotes
maxi, j |Bij | and tr(B) stands for the trace ;i Bii. We write B > 0 to mean
that B is positive definite and non-singular.

We will consider a sequence of independent random vectors X (i)=
(X (i)

1 ,..., X
(i)
n ) (i=1, 2,...) taking values in the Euclidean space Rn, with

densities, mean zero and finite covariance matrices C (i)=EX (i)X (i)T > 0 and
set vi=tr(C (i)). For a non-empty set of positive integers S, define X (S)=
;i ¥ S X

(i), C (S)=;i ¥ S C (i), vS=tr(C (S)) and U (S)=(;i ¥ S X
(i)/`vS with

density g (S). We require certain conditions below.

Condition 1. Convergent Covariance Condition. There exists a
matrix C > 0 such that

lim
WQ.

1 sup
S: vS \W

: C (S)

vS
−C : 2=0.

For the rest of this paper, C stands for this matrix. We will write
C −1=(C −1

ij ) for the inverse of C, and I for the identity matrix. This
Condition implies that for all y > 0, tr((C (S)/vS+Cy) −1 C−I/(1+y))Q 0.

Definition 1.1. For t > 0, define the n-dimensional ellipsoids: E(t)=
{z=(z1,..., zn) :;i, j C

−1
ij zizj [ t}.

If random vector X=(X1,..., Xn) has mean zero and covariance B
then the expectation E ;i, j C

−1
ij XiXj=tr(C −1B), so by Chebyshev:

P(X ¨ E(t)) [
1
t

E C
i, j
C −1
ij XiXj=

1
t

tr(C −1B).

Take K0=max(eigenvalue of C −1) then if tr(B)=1 then tr(C −1B) [K0.

Condition 2. Uniform Lindeberg Condition. There exists a
decreasing function k(R), such that k(R)Q 0 as RQ. and for all R > 0,
i=1, 2,..., and r=1,..., n:

EX (i)2
r I(X

(i) ¨ E(Rvi)) [ vik(R).

By Cauchy–Schwarz, if this condition holds then EX (i)
r X

(i)
s I(X

(i) ¨

E(Rvi)) [ vik(R).
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Condition 3. Bounded Trace Condition. There exists V0 such that
vi [ V0-i.

Given a function p, write Np for the gradient vector (“p/“x1,...,
“p/“xn) and N2p for the Hessian matrix (N2p)ij=“2p/“xi “xj.

Definition 1.2. For a random vector U with differentiable density f
and covariance matrix B > 0, define the score vector function rU(x)=
N log f(x)=Nf(x)/f(x) I(f(x) > 0). Define the Fisher Information
matrix J and its standardised version Jst by:

J(U)=EU(rU(U) rU(U)T),

Jst(U)=J(U)−B −1.

SinceE(UrU(U)T)=−I,weknowJst(U)=E(rU(U)+B −1U)(rU(U)+B −1U)T

is positive definite.

We use ZB and Z ( · )
B to represent multivariate normal, or N(0, B)

random vectors with mean zero and covariance B; the corresponding
probability density is denoted by fB. Given y > 0, set Y (S)

y =U (S)+ZCy,
where ZCy is N(0, Cy), independent of U (S).

Definition 1.3. Define o(W, y)=supS: vS \Wtr(CJst(Y
(S)
y )).

Condition 4. Integrability Condition. There exists V1 such that
>.0 o(V1, y) dy is finite.

Note. This condition will hold if > e0 tr(CJ(Y (S)
y )) dy is finite for some e.

Definition 1.4. Given probability densities f and g, define the
Kullback–Leibler distance (or relative entropy) to be:

D(f || g)=F f(x) log 1 f(x)
g(x)
2 dx.

Kullback–Leibler distance is shift and scale invariant. Furthermore
D(f || g) \ 0 with equality iff f(x)=g(x) for almost all x. However,
D(f || g) is not a metric; it does not satisfy the triangle inequality and is
asymmetric. The principal theorem of the paper is the following:

Theorem 1.5. If the convergent covariance, uniform Lindeberg,
bounded trace and integrability conditions listed above hold then:

lim
WQ.

( sup
S: vS \W

D(g (S) || fC))=0
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Historically, the first attempt to use entropy theoretic methods to
prove weak convergence for random vectors was made by Linnik. (11)

However, as in the one-dimensional situation, (10) he does not prove con-
vergence in D.

Theorem 1.5 is reminiscent of Theorem 2.2 of Carlen and Soffer, (3)

which holds under stricter conditions. Firstly, in place of our Condition 1,
they require the stronger condition that C (S)/vS Q I/n. Secondly, in place of
our Condition 3, they need that the variances be bounded above and below
(Eq. (2.12)). Our Condition 2 corresponds directly to their Eq. (2.11).

Our method of proof is significantly different from that of Carlen and
Soffer. They use topological arguments developed in their Lemma 1.4 to
show that a certain set of distributions is compact, and that the convolu-
tion map is continuous, and hence in Theorem 1.2 provide an existence
proof of a positive lower bound on the rate of increase of entropy. In con-
trast, our Proposition 3.3 constructs an explicit lower bound on the rate of
decrease of Fisher information.

An example where these conditions hold in the ‘‘nearly identical’’ case
is where each of the X (i) are of the form W (i)+Z (i)

eC for an IID sequence Z (i)
eC.

In this case, the covariance conditions onX (i) to corresponding conditions on
the covariance of W (i) which can be easily verified. The uniform Lindeberg
condition holds by an argument similar to that in Lemma 5.1 below. The
Integrability Condition holds because J(X (i)) [ J(Z (i)

eC), which is finite.
In the IID case, matters are simpler, and we recover a natural exten-

sion to the vector case of Theorem 1 of ref. 1.

Theorem 1.6. In the case of IID random vectors with densities,
finite covariance C > 0 and v=tr(C), denote the density of (;m

i=1 X
(i))/

`mv by gm. If the Kullback–Leibler distance D(gm || fC) is ever finite then:

D(gm || fC)Q 0.

Kullback and Leibler (9) also introduced a symmetrized version of D,
expressed as D̃(f, f)=D(f || f)+D(f || f). Although this restores sym-
metry, it is unknown what conditions will guarantee its convergence, since
for example unless suppf is the whole space, D̃(f, f)=.. In particular,
we feel that the simplicity of Theorem 1.6 suggests that D(f || f) is a
natural measure of distance.

2. TECHNICAL BACKGROUND

We will use a generalisation of the well-known de Bruijn identity
expressing Kullback–Leibler distance as an integral of Fisher informations,
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using the natural inner product space for random vectors and the Fisher
information matrix.

Definition 2.1. For random vectors U, V, define the inner product
OU, VP=E(UTV) and the norm OUP2=E(UTU).

Note that for any matrix P, OPU, PVP=E tr(PTPVUT).
Throughout this section, X stands for a random vector with density f

and covariance matrix B > 0. Furthermore, given y > 0, Yy=X+ZCy,
where ZCy is independent of X and Yy has density fy.

Lemma 2.2. For x ¥Rn:

2
“fy
“y
(x)=C

i, j
Cij
“
2fy

“xi “xj
(x)=tr(C(N2fy)(x)).

Proof. fy is twice continuously differentiable, so we know that N2fy
exists. Now:

“fCy

“zi
(z)=1 − ; k C

−1
ik zk
y
2 fCy(z), z ¥Rn

and so:

“
2fCy

“zi “zj
(z)=1 −C

−1
ij

y
+
(; k, l C

−1
ik zkC

−1
jl zl)

y2
2 fCy(z).

Hence, we deduce that

tr(CN2fCy(z))=1 −
n
y
+
zTC −1z
y2
2 fCy(z)=2

“fCy

“y
(z),

and taking expectations provides the result.
Observe that:

D(f || fC)=
1
2

log((2pe)n det C)−H(f)+
log e
2

(tr(C −1B)−n)

=H(fC)−H(f)+
log e
2

(tr(C −1B)−n),
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where H(p)=− > p(x) log p(x) dx represents the differential entropy of
density p.

Theorem 2.3 (n-dimensional de Bruijn’s identity).

D(f || fC)=
log e
2

F
.

0
tr(CJst(Yy)) dy+

log e
2

(tr(C −1B)−n)

+
log e
2

F
.

0
tr 1C 1 (B+Cy) −1− C

−1

1+y
22 dy

Note that if |B−C|Q 0, the second and third terms tend to zero.

Proof. This is an integral form of Lemma 2.2. As yQ., fy tends to
a normal, so: limyQ.(H(fy)−n log`1+y)=1/2 log((2pe)n det C). As
yQ 0,fy Q f inprobability, soH(fy)QH(f)byupper semi-continuityofH,
where H(f) may be −.. Hence if the integral is finite, by Lemma 2.2, for
all t > 0, we can write H(f) as:

H(fy)−F
t

0

“H
“y
(fy) dy

=H(ft)−
1
2
F
t

0
C
i, j
Cij F (N2fy)ij log fy(x) dx dy

=H(ft)−n log`1+t−
log e
2

F
t

0

1C
i, j
Cij F

“fy
“xi

“fy
“xj

1
fy
dx−

n
1+y
2 dy

=H(ft)−n log`1+t−
log e
2

F
t

0
tr 1C 1J(Yy)−

C −1

1+y
22 dy.

We obtain the result by taking the limit as tQ.. If the integral is −.,
then by Fatou H(f)=−.. Rearranging, we obtain the first form.

The second generalisation that we require is Hermite polynomials in n
dimensions. Our exposition follows that of Dattoli et al., (4) and extends
their method from two dimensions in the obvious way. In what follows Zn

+

denotes the set of nonnegative integer vectors m=(m1, m2,..., mn) and
|m|=; n

i=1 mi. We fix a matrix B throughout the rest of this section.

Definition 2.4. Define Hermite polynomials Gm and Hm, m ¥Zn
+,

with respect to multivariate normal weight fB, via the generating functions
G(x, t) and H(x, t), where x, t ¥Rn:
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1. G(x, t)= C
m ¥Z

n
+

tm11 · · · t
mn
n

m1! · · ·mn!
Gm(x)=exp(tTB −1x− tTB −1t/2),

2. H(y, s)= C
l ¥Z

n
+

s l11 · · · s
ln
n

l1! · · · ln!
Hl(y)=exp(sTy− sTBs/2).

Write (a) 0=(0,..., 0) (b) ei=(0,..., 1,..., 0) (1 at the ith position) (c)
eij=(0,..., 1,..., 1,..., 0) (1 at the ith and jth positions, i ] j). Then G0(x)=
H0(y)=1, Gei(x)=(B −1x)i, Hei(y)=yi, Geij(x)=;k, l B

−1
ik B

−1
jl xkxl−B

−1
ij

and Heij(y)=yiyj−Bij. Observe that in the one-dimensional case with
B=(s2), Hm(x) have a standard form (see, for example, Szegő, (13)

pp. 104–109), and Gm(x)=Hm(x)/s2m.
Each set {Gm} and {Hm} spans the space L2(fB(x) dx), although

neither set is orthogonal. We need a formula for OGm, HlP:

Proposition 2.5.

OGm, HlP=F Gm(x) Hl(x) fB(x) dx=dmlm1! m2! · · ·mn!

Proof. For all s, t ¥Rn:

C
m, l

tm11 · · · t
mn
n

m1! · · ·mn!
s l11 · · · s

ln
n

l1! · · · ln!
Gm(x) Hl(y)

=exp(tTB −1x− tTB −1t/2+sTy− sTBs/2).

Taking y=x, multiplying by fB(x) and integrating, the left hand side
becomes:

C
m, l

1 tm11 · · · tmnn
m1! · · ·mn!
21 s l11 · · · s lnn
l1! · · · ln!
2 F Gm(x) Hl(x) fB(x) dx

=exp(− sTBs/2− tTB −1t/2) E[exp((s+B −1t)T ZB)]

=exp(− sTBs/2− tTB −1t/2) exp((s+B −1t)T B(s+B −1t)/2)

=exp(sT t),

so comparing coefficients we deduce the result.
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Definition 2.6. Let Hr and Gr be Hermite polynomials with respect
to fB. Given a function u=;r arGr=;s bsHs ¥ L2(fB(x) dx), define the
projection map uW Gu by:

(Gu)(x)= C
r: |r| \ 2

arGr(x)= C
r: |r| \ 2

brHr(x)

=u(x)−F u(y)(1+yB −1x) fB(y) dy,

so that > (Gu)2 (x) fB(x)=;r: |r| \ 2 arbrr1! · · · rn!.
Define a seminorm ||u||G using:

||u||2G=C
i
F (Gui)2 (x) fB(x) dx.

Note that if l=> u(y) yfB(y) dy, then aei=li, bei=(B −1 l)i.

3. SANDWICH INEQUALITY

First we need a technical lemma:

Lemma 3.1. For y, K > 0, there exists a constant ty, K > 0 such that
for any random vector X with covariance matrix B where tr(C −1B) [K,
the sum X+ZCy, where ZCy is independent of X, has density f bounded
below by ty, KfCy/2.

Proof. By Definition 1.1 and Chebyshev: > I(x ¥ E(2K)) dFU(x)
\ 1−K/2K=1/2. Hence if FU is the distribution function of U, for any
y ¥Rn:

fy(y)=F fCy(y−x) dFU(x)

\ min{fCy(y−x) : x ¥ E(2K)}/2

=
fCy/2(y)
2 (n/2+1)

exp 1 min
x ¥ E(2K)

3 (x+y)T C −1 (x+y)−2xTC −1x
2y

42

\
fCy/2(y)
2 (n/2+1)

exp 1 min
x ¥ E(2K)

3 −x
TC −1x
y
42

\ 2 −(n/2+1) exp(−2K/y) fCy/2(y)=ty, KfCy/2(y).

Note that ty, K=2 −(n/2+1) exp(−2K/y) depends only on K and y.
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Lemma 3.2. Let V (1), V (2) be independent random vectors with
densities p and q and let V (3)=V (1)+V (2), with score functions r ( j)=rV( j),
i=1, 2, 3. With probability one, for any b ¥ [0, 1]:

r (3)=E[br (1)(V (1))+(1−b) r (2)(V (2)) | V (3)].

Here and below, E[ · | V (3)] stands for the conditional expectation with
respect to the s-algebra generated by V (3).

Proof. Since V (3) has the density r(w)=> p(x) q(w−x) dx, for all
i=1,..., n:

(r (3)(w))i=
1
r(w)

F
“p
“xi

(x) q(w−x) dx=F (rU(x))i
p(x) q(w−x)

r(w)
dx,

which equals, almost surely, the expected value E[r (1)(V (1))i | V (3)](w).
Similarly, we can produce an expression in terms of the score function r (2).
Now add b times the first expression to 1−b times the second one.

Until the end of this section U (1) and U (2) denote independent random
vectors with mean zero and covariances B (1), B (2) > 0. Given y > 0, we set
Y ( j)
y =U ( j)+Z ( j)

Cy , j=1, 2, where Z ( j)
Cy are independent of the U ( j) and of

each other. Furthermore, for 0 < a < 1, define Y (3)
y =`a Y

(1)
y +`1−a Y

(2)
y ,

and denote by f ( j) the density and r ( j) the score function of Y ( j)
y , j=1, 2, 3.

Finally let Z̃ (1) and Z̃ (2) be independent N(0, Cy/2) and Z̃ (3)=`a Z̃ (1)+
`1−a Z̃ (2).

The main proposition of this section is the following:

Proposition 3.3 (Sandwich Inequality). If tr(C −1B (i)) [K then
there exists a constant ty, K such that for any matrix P:

a tr(PTPJ(Y (1)
y ))+(1−a) tr(PTPJ(Y (2)

y ))− tr(PTPJ(Y (3)
y ))

=aOPr (1)(Y (1)
y )P

2+(1−a)OPr (2)(Y (2)
y )P

2−OPr (3)(Y (3)
y )P

2

\ (||Pr (1)||2G+||Pr
(2)||2G) 1

t2y, Ka(1−a)
2
2 .

The proof uses a series of lemmas.
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Lemma 3.4. For any matrix P:

aOPr (1)(Y (1)
y )P

2+(1−a)OPr (2)(Y (2)
y )P

2−OPr (3)(Y (3)
y )P

2

\ t2y, KO`a Pr
(1)(Z̃ (1))+`1−a Pr (2)(Z̃ (2))P2−t2y, KOw(Z̃

(3))P2

where t2y, K is the constant from Lemma 3.1 and:

w(x)=E[`a Pr (1)(Z̃ (1))+`1−a Pr (2)(Z̃ (2)) | Z̃ (3)=x]

=`a F Pr (1)(`a x+`1−a v) fCy/2(v) dv

+`1−a F Pr (2)(`1−a x−`a v) fCy/2(v) dv.

Proof. Taking V (1)=`a Y (1)
y , V (2)=`1−a Y (2)

y in Lemma 3.2 gives
Y (3)
y =V (3). Hence:

aOPr (1)(Y (1)
y )P

2+(1−a)OPr (2)(Y (2)
y )P

2−OPr (3)(Y (3)
y )P

2

=O`a Pr (1)(Y (1)
y )+`1−a Pr

(2)(Y (2)
y )−Pr

(3)(Y (3)
y )P

2

\ t2y, KO`a Pr
(1)(Z̃ (1))+`1−a Pr (2)(Z̃ (2))−Pr (3)(Z̃ (3))P2,

which is minimised when Pr (3)(Z̃ (3)) is replaced by the orthogonal projec-
tion w(Z̃ (3)).

Now rearranging, the conditional density p (1)(s | x) of Z̃ (1) given
(Z̃ (3)=x) is ((py)n det C) −1/2 exp(−(sTC −1s+uTC −1u−xTC −1x)/y), where
`a s+`1−a u=x. This equals fCy/2(v), where v=(s−`a x)/`1−a .
Similarly the conditional density p (2)(s | x) of Z̃ (2) given that Z̃ (3)=x is
fCy/2(v), where v=(r−`1−a x)/`a . Substituting for r, s, the result
follows.

Lemma 3.5. If Gr and Hr are the Hermite polynomials with respect
to fB, then the linear map Lb, 0 < b < 1, defined by:

Lbu(x)=F u(`b x+`1−b v) fB(v) dv, u ¥ L2(fB(x) dx)

takes Gr into (`b) |r| Gr and Hr into (`b) |r|Hr.
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Proof. Consider the action of Lb on the generating functions G(x, a)
and H(x, a). For given a, x ¥Rn, LbG(x, a) equals:

F exp 1 −a
TB −1a
2

+aTB −1(`b x+`1−b v)2 fB(v) dv

=F fB(v−`1−b a) exp(`b aTB −1x−baTB −1a/2) dv

=G(x,`b a).

Similarly Lb: H(x, a)QH(x,`b a).
An immediate consequence of Lemma 3.5 is that given a matrix P, the

vector-function w defined in Lemma 3.4 has the form La(Pr (1))+l1−a(Pr (2)):

w(x)=C
r

[(`a) |r|+1 a (1)r +(`1−a)
|r|+1 a (2)r ] Gr(x)

=C
r

[(`a) |r|+1 b (1)r +(`1−a)
|r|+1 b (2)r ] Hr(x), x ¥Rn,

where Pr ( j)=;r a
( j)
r Gr(x)=;r b

( j)
r Hr(x), j=1, 2.

Lemma 3.6. If for j=1, 2, (Pr ( j))(x)=; a ( j)r Gr(x)=; b ( j)r Hr(x)
then:

O`a Pr (1)(Z̃ (1))+`1−a Pr (2)(Z̃ (2))P2−Ow(Z̃ (3))P2

\ (||Pr (1)||2G+||Pr
(2)||2G)

a(1−a)
2

.

Proof. Defining wŒ=(a(1−a))1/4 L`a(1−a) (Pr (1)−Pr (2)), we have:

wŒ(x)=C
r

(a(1−a)) (|r|+1)/4 (a (1)r −a
(2)
r ) Gr(x)

=C
r

(a(1−a)) |r|+1)/4 (b (1)r −b
(2)
r ) Hr(x)

and

Ow(Z̃ (3))P2 [ Ow(Z̃ (3))P2+OwŒ(Z̃ (3))P2

=C
r

r1! · · · rn! [a
(1)
r b

(1)
r (a

r+1+a (r+1)/2(1−a) (r+1)/2)

+a (2)r b
(2)
r ((1−a)

r+1+a (r+1)/2(1−a) (r+1)/2)].
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Expanding, and using the normalisation of the Hr and Gr, we deduce that:

O`a Pr (1)(Z̃ (1))+`1−a Pr (2)(Z̃ (2))P2−Ow(Z̃ (3))P2

=C
r

[aa (1)r b
(1)
r +(1−a) a

(2)
r b

(2)
r ] r1! · · · rn!−Ow(Z̃ (3))P2

\ C
r ] 0

[A|r|(a) a
(1)
r b

(1)
r +A|r|(1−a) a

(2)
r b

(2)
r ] r1! · · · rn!,

where Ar(x)=x−x r+1−x (r+1)/2(1−x) (r+1)/2. As A1(x) — 0, terms involving
A1 may be removed. For fixed x ¥ [0, 1], Ar(x) is increasing in r, so we may
replace Ar(a), Ar(1−a) by the (positive) values A2(a), A2(1−a). Finally,
note that for x ¥ [0, 1], A2(x)=x−x3−x3/2(1−x)3/2=x(1−x)(1+x−
x1/2(1−x)1/2) \ x(1−x)/2, which completes the proof.

Proposition 3.3 follows on substituting Lemma 3.6 into Lemma 3.4.

4. STABILITY RESULT FOR CRAMÉR–RAO LOWER BOUND

Definition 4.1. For a function k: R+ WR+, with k(R)Q 0 as
RQ., define the set of random vectors Ck:

Ck=˛X: EX=0, vX=tr(EXTX) <.,

EX2
jI(X ¨ E(RvX)) [ vXk(R) for all j, R

ˇ .

Ck is a scale-invariant class, and the uniform Lindeberg condition
guarantees that each X (i) ¥ Ck. Lemma 5.1 below ensures that there exists a
fixed positive function Y with Y(R)Q 0 as RQ. such that for all S,
X (S) ¥ CY.

Throughout this section, X will represent a random vector with mean
0 and covariance B (X), with vX=tr(B (X)). We fix y > 0 and define random
vector Yy=X/`vX+ZCy, where ZCy is independent of X. We write B (Yy),
fYy and rYy for the covariance, density and score function of Yy; sometimes
we will use a simplified notation By, fy and ry. Observe that B (Yy)=B (X)/vx
+Cy. As before,Gm, Hm are the Hermite polynomials with respect to fCy/2.

Proposition 4.2. Fix a positive function k with limRQ. k(R)=0,
and as above fix y > 0. Given a random vector X ¥ Ck, for any invertible
matrix P there exists a function nP(e) (depending only on P), with nP(e)Q 0
monotonically as eQ 0, such that

tr(PTPJst(Yy)) [ nP(||PrYy ||G).

The proof is based on Lemmas 4.3 to 4.5.
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Lemma 4.3. Consider density f̃ with score function r̃ ¥

L2(fCy/2(x) dx). There exists õ(x)=f̃(0) exp(;i uixi+1/2;i, j Vijxixj),
such that for any t > 0:

lim
zQ 0+

[ sup
x ¥ E(t)

|f̃(x)/õ(x)−1| : ||r̃||G [ z]=0.

Coefficients ui and Vij relate to the Hermite expansion r̃=;m ¥Z
n
+
amGm

as follows: vector (u1 · · · un)=a0, and matrix V=(Vij)=AC −1, where A=
(ae1 | · · · |aen) is the matrix with ith column equal to the vector aei.

Proof. We write E(t) for the volume of E(t). If x ¥ E(t) then
fCy/2(x) \ l(t, y/2), where l(t, y/2)=((py)n det C) −1/2 exp(− t/y) > 0.
Hence, for any t > 0 and vector-function h: RnQRn:

C
k
F |hk(x)| I(x ¥ E(t)) dx

[ 1n F I(x ¥ E(t)) dx2
1/2 1 F C

k
h2k(x) I(x ¥ E(t)) dx2

1/2

[ 1 nE(t)
l(t, y/2)
21/2 1C

k
F h2k(x) I(x ¥ E(t)) fCy/2(x) dx2

1/2

[ 1 nE(t)
l(t, y/2)
21/2 1C

k
F h2k(x) fCy/2(x) dx2

1/2

.

Using the above expansion r̃=;m ¥Z
n
+
amGm, sinceGei(x)=(C −1x)i, the best

linear approximation to r̃ becomes a0+(AC −1) x, with A=(ae1 | · · · |aen).
Thus taking h(x)=(Gr̃)(x)=r̃(x)−a0−(AC −1) x, we know that:

C
k
F |(Gr̃)(x)|k I(x ¥ E(t)) dx [ ||r||G 1

nE(t)
l(t, y/2)
21/2.

Now, since f̃ is continuously differentiable, (Gr̃) is continuous, so for any
y ¥ E(t), if |(Gr̃)(y)−(Gr̃)(0)| > e, then considering a thin tube L around
the line segment connecting 0 and y, for some eŒ:

eŒ [C
k
F |(Gr̃)k (x)| I(x ¥ L) dx [C

k
F |(Gr̃)k (x)| I(x ¥ E(t)) dx.

Hence as ||r̃||G Q 0, we have control uniformly in y ¥ E(t) over:

[log f̃(x)−xTAC −1x/2−xTa0]
y
0 .
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To complete the proof, observe that |g(x)−g(0)| < c implies |exp(g(x)−
g(0))−1| [ exp c−1, so we take o as suggested, with (u1,..., un)=a0 and
V=AC −1.

Lemma 4.4. Random vector Yy has rYy ¥ L
2(fCy/2(x) dx) and hence

rYy=;m amGm. Let o(x)=k exp(;i uixi+1/2;i, j Vijxixj) where ui and Vij
are as in Lemma 4.3. There exists a constant zy (depending only on y) such
that if supx ¥ E(zy) |fy(x)/o(x)−1| [ 1/2, then we can write o(x)=cf(x),
where c > 0 is a constant and f is a multivariate N(m, S) density, for
m ¥Rn and matrix S > 0. Finally, there exist constants c1, c2 > 0 (depending
only on y) such that for xTC −1x \ 4zy:

cf(x) [ c1 exp(−c2xTC −1x).

Proof. ForanyP: ty, K > (Pr)2 (x) fCy/2(x) dx [ > (Pr)2 (x) fy(x) dx=
tr(PTPJ(X+ZCy)) [ tr(PTPC −1)/y, where the first inequality follows from
Lemma 3.1. Notice that for y ¥Rn:

fy(y)=
1

(2py)n/2 (det C)1/2
EX exp 1 −(y−X/`vX)

T C −1(y−X/`vX)

2y
2 ,

so that fy [ ((2py)n (det C)) −1/2. In fact, better bounds are possible. Write
W=yTC −1y. Then (y−x/`vX)T C −1(y−x/`vX) is minimised as a func-
tion of x on E(WvX/4) when x=`vx y/2, which gives the value W/4. For
all other y, (x−y)T C −1(x−y) is non-negative. Breaking up the region
of integration into y ¥ E(WvX/4) and y ¨ E(WvX/4), the result follows
by Chebyshev since E(X/`vX)T C −1(X/`vX)=tr(C −1B (X)/vX) [K0=
max(eigenvalue of C −1). We deduce that

fy(y) [
1

(2py)n/2 (det C)1/2
1exp 1 −y

TC −1y
8y
2+ 4K0

yTC −1y
2

[
1

(2py)n/2 (det C)1/2
1 8y+4K0

yTC −1y
2 .

By Lemma 3.1,

fy(0) \ ty, KfCy/2(0)=
exp(−2K0/y)

2(2py)n/2 (det C)1/2
.
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Now for x ¥ E(zy):

o(x)
o(0)

[
fy(x)
fy(0)/3

[
3(8y+4K0)

2 exp(−2K0/y) xTC −1x
.

Thus taking zy=2(8y+4K0) exp(2K0/y), for any y such that yTC −1y=zy,
we know that both o(y)/K(0) [ 3/4 and o(−y)/o(0) [ 3/4. This means
that both uTy+1/2yTVy [ log 3/4 and −uTy+1/2yTVy [ log 3/4.
Choosingwhicheverof{y, −y}makesuTypositive,wededucethat1/2yTVy [
log(3/4), and hence by scaling, for any x, 1/2xTVx [ log(3/4) xTC −1x/zy.

This implies that the matrix (Vij) is negative definite, and we can write
o=cf, where f is a non-degenerate N(m, S) density, with S > 0, m=Su
and c=fy(0)(2p)n/2 (det S)1/2 exp(uTS −1u/2).

Now for any y such that yTC −1y=zy, f(y) < f(0) and f(−y) < f(0),
so it must be the case that m ¥ E(zy), since otherwise the triple f(y), f(0),
f(−y) would be monotonic. Since m ¥ E(zy), |fy(m)/cf(m)−1| [ 1/2, and
so cf(m) [ 2fy(m) [ 2/((2py)n (det C))1/2.

For xTC −1x \ 4zy \ 4mTC −1m, and so by Cauchy–Schwarz
(x−m)T C −1(x−m) \ (`xTC −1x−`mTC −1m)2 \ xTC −1x/4, and hence:

cf(x)=cf(m) exp((x−m)T V(x−m)/2)

[
2

((2py)n (det C))1/2
exp 1 −1 log(4/3)

4zy
2 yTC −1y2 .

Lemma 4.5. Fix y > 0 and a function k as in Definition 4.1. Given
a random vector X ¥ Ck, there exist functions rj(d, z), j=0, 1, 2, for
0 < d [ 1/2, z \ zy, such that:

1. If supx ¥ E(z) |fy(x)/cf(x)−1| [ d, where f is a N(m, S) density
then |c−1| < r0(d, z), |m| < r1(d, z), and the covariance matrix By satisfies
|By−S| < r2(d, z).

2. limdQ 0, zQ. ri(d, z)=0 for each i.

Proof. Since for y ¥ E(z), |fy(y)−cf(y)| < fy(y) d/(1−d), for any
function h we can write:

: F h(x)(fy(x)−cf(x)) dx :

[
d

1−d
F |h(x)| fy(x) dx+

1−2d
1−d
:F h(x) fy(x) I(x ¨ E(z)) dx :

+:c F h(x) f(x) I(x ¨ E(z)) dx : .
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Taking h(x)=1, xi, xixj, we deduce the result. Now, EYT
yC

−1Yy=
tr(C −1By) [K0+ny, so Chebyshev will give us control over EI(Yy ¨ E(z))
and EYiI(Yy ¨ E(z)). Lemma 4.4 gives cf(x) [ c1 exp(−c2xTC −1x), where
c, c1, c2 depend only on y.

By Cauchy–Schwarz, since Yy ¥ CY for some Y, for any i, j,
EYiYjI(Y ¨ E(z)) [ (EY2

iI(Yy ¨ E(z)))1/2 (EY2
jI(Yy ¨ E(z)))1/2 [ tr(By) Y(z).

Proof of Proposition 4.2. We follow an argument from ref. 1. Write
FBy for the N(0, By) distribution function, fBy for the density and
rBy=B −1

y x for the score function.
By Lemma 4.3, |fy(y)/cf(y)−1| [ d for y ¥ E(z), where z, d depend

only on y and the seminorm ||rYy ||G and y, and zQ., dQ 0 as ||rYy ||G Q 0.
Hence:

F |fy(y)−fBy(y)| dy

[
d

1−d
P(Yy ¥ E(z))+2 |E(z)| sup

y ¥ E(z)
|cf(y)−fBy(y)|+

2tr(C −1By)
z

,

By Proposition 4.5, we deduce that fy tends in L1(dx) to fBy as ||rYy ||G Q 0,
uniformly in Ck:

lim
zQ 0+

sup[||fy−fBy ||L1(dx) : ||rY ||G [ z, X ¥ Ck]=0.

Furthermore this implies that f/fBy Q 1 in N(0, By) probability. By Lem-
mas 4.3 and 4.5, we know that > (Pr(x)−PrBy(x))

2 fCy/2(x) dxQ 0. But
convergence in L2(fCy/2(x) dx) implies convergence in N(0, Cy/2) proba-
bility. So, since N(0, Cy/2) and N(0, By) are equivalent measures, we
deduce that rQ rBy in N(0, By) probability.

The product of convergent sequences is also convergent. Hence we
deduce that as zQ 0+, uniformly over X ¥ Ck with ||ry ||G [ z:

F I 1 :(PrY(x))T PrY(x)
fy(x)
fBy(x)

−(PB −1
y x)

T PB −1
y x : \ e2 fBy(x) dxQ 0.

We want to show that {rT
yCryfy/fBy} form a uniformly FBy-integrable

family. By using an analogue of Lemma 3 from ref. 1 there exists a con-
stant cy such that:

rT
yCryfy(x)=C

i
(PNfy)

2
i

1
fy(x)

[ cyf2y(x),
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which follows as (P“fy/“y)i=EX(PC −1(y−X))i fCy(y−X), and since we
know that u exp(−u/2y) [ 4y exp(−1) exp(−u/4y).

Thus we need only that hy=f2y/fBy form a uniformly FBy-integrable
family. Since entropy increases on convolution: > hy log hy dFBy=−H(f2y)+
> f2y log fBy [ −H(f2Cy)+> f2y log fBy :=L(y). Since > |hy | I(|hy | > K) dFBy
[ > hy(log hy/log K) I(|hy | > K) dFBy [ L(y)/log K. The uniform FBy-inte-
grability of the density ratios follows.

We deduce that, defining nP(z) to be

sup
X ¥ Ck : ||ry||G [ z

F 1 (Pr(x))T (Pr(x))
fy
fBy
−(PB −1

y x)
T PB −1

y x2 dFBy(x),

then limzQ 0+nP(z)=0, exactly as required.
Now the final step is to note that if P is invertible, then ||PrYy ||G small

implies that ||rYy ||G is small. This follows since if h is the best linear
approximation to r then Ph is the best linear approximation to PrYy.
Hence G(PrYy)=PG(rYy).

Now for Q=(Qij)=P −1, and for any function g, by Cauchy–Schwarz:

C
i
F (Qg(x))2i fC(x) dx=C

i, j, k
F QijQikgj(x) gk(x) fC(x) dx

=C
j, k

F (QTQ)jk gj(x) gk(x) fC(x) dx

[ n(max
j, k
(QTQ)jk)1C

j
F gj(x)2 fC(x) dx2 ,

taking g=P(GrYy), we know ||rYy ||G [ n(maxj, k(QTQ)jk) ||PrYy ||G.

5. CONVERGENCE OF THE DENSITY

Throughout this section, X (1), X (2),... is a sequence of independent
random vectors. We also set Y (S)

y =U (S)+ZCy, where U (S)=;i ¥ S X
(i)/`vS .

Lemma 5.1. Let k be as in Definition 4.1. If for all i, X (i) ¥ Ck then
for any B > 0, there exists a positive function Y such that for all finite S,
X (S) ¥ CY and X (S)/`vS+ZBy ¥ CY, where ZBy is independent of X (S).

Proof. As in the one-dimensional situation, we need only consider
the case of X (i) even, that is, having a probability distribution invariant
under reflection about coordinate hyperplanes.
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If t > 0 and k0 is the smallest eigenvalue of B −1 then u ¥ E(t) means
that t \ uTB −1u \ k0uTu \ k0u

2
r. If random vectors V (i)=(V (i)

1 ,..., V
(i)
n ) are

even, with V (i) ¥ E(tvi) and E(V (i)
r )

2 [ vi then

E 1 C
i ¥ S
V (i)
r
24 [ C

i ¥ S
E(V (i)

r )
4+3 1 C

i ¥ S
E(V (i)

r )
222

[ C
i ¥ S
tvi/k0E(V

(i)
r )

2+3 1 C
i ¥ S

E(V (i)
r )

222

[ (t/k0+3) 1 C
i ¥ S
vi 2

2

.

Apply this to the sequence V (i)=X (i)I(X (i) ¥ E(tvi)), which is even, since
for any r, E(r) is a symmetric set.

Hence we deduce the lemma, by Cauchy–Schwarz, since:

EX (S)2
r I(X (S) ¨ E(RvS))

=E 1 C
i ¥ S
X (i)
r I(X

(i) ¨ E(tvi))+I(X (i) ¥ E(tvi))2
2

I(X (S) ¨ E(RvS))

[ 2 C
i ¥ S

EX (i)2
r I(X

(i) ¨ E(tvi))

+2 1E 1 C
i ¥ S
X (i)
r I(X

(i) ¥ E(tvi))2
421/2 P(X (S) ¨ E(RvS))1/2

[ 2vSk(t)+(t/k0+3)1/2 vS(K0/R)1/2,

where as before K0 is the largest eigenvalue of B −1. Hence taking t=R1/3,
we obtain the result that X (S) ¥ CY, with k(R)=2Y(R1/3)+((R1/3/k0+3)
(K0/R))1/2. By the same argument, we can add an independent vector ZBy,
which also has well behaved tails.

Proof of Theorem 1.5. By the Covariance Convergence Condition,
given e, there exists VŒ=VŒ(e) such that vS \ VŒ implies that for all y > 0,
− e/4 [ tr(C(C (S)+Cy) −1−C −1/(1+y)) [ e/4, and hence

− e/4 [ CJst(Y
(S)
y )−1CJ(Y (S)

y )−
n

1+y
2 [ e/4.

The next observation is that since the vi are bounded by V0, given a set
S with vS \ 3V0, we can write it as S=S1 2 S2, where S1 5 S2=”,
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and 1/3 [ a [ 2/3 where a=vS1/vS. For example, defining r=
min{l: vS 5 (−., l] \ vS/3},letS1=S 5 (−., r).ThenvS1 \ vS/3,andvS1 [ vS/3
+V0 [ 2vS/3.

Now given e > 0, take S such that vS \ 3 max(VŒ, V0). Partitioning
S=S1 2 S2 as above, we have that vS1, vS2 \ VŒ and hence:

− e/4 [ tr CJst(Y
(S)
y )−(tr CJ(Y

(S)
y )−n/(1+y)) [ e/4

and so − e/4 [ tr CJst(Y
(Si)
y )−(tr CJ(Y

(Si)
y )−n/(1+y)) [ e/4, i=1, 2.

Using Propositions 3.3 and 4.2 with PTP=C, there are two pos-
sibilities:

1. a tr CJ(Y (S1)
y )+(1−a) tr CJ(Y (S2)

y )− tr CJ(Y (S)
y ) \ e, and there-

fore: a tr CJst(Y
(S1)
y )+(1−a) tr CJst(Y

(S2)
y )− tr CJst(Y

(S)
y ) \ e/2.

2. a tr CJ(Y (S1)
y )+(1−a) tr CJ(Y (S2)

y )− tr CJ(Y (S)
y ) < e, then since

a(1−a) \ 2/9, by Proposition 3.3 both ||Pr (S1)||G and ||Pr (S2)||G are less
than 3e1/2/ty, K0. By Proposition 4.2 tr CJst(Y

(S1)
y ) and tr CJst(Y

(S2)
y ) are both

less than nP(3e1/2/ty, K0).

For any V \ 3 max(VŒ, V0), if vS \ V, then for i=1, 2, vSi \ V/3, so
tr CJst(Y (Si)) \ o(V/3, y). Hence in the first case, tr CJst(Y

(S)
y ) [

o(V/3, y)− e/2, and in the second, tr CJst(Y
(S)
y ) [ nP(3e

1/2/ty). We
conclude that:

o(V, y)= sup
S: vS \ V

tr CJST(Y
(S)
y ) [ max 1o(V/3, y)− e, nP 1

3e1/2

ty
22 .

Hence assuming that o(V, y) \ d > 0 for all V gives o(V, y) [ o(V/3, y)
−(tyn −1(d)/3)2 for all V, providing a contradiction, since o is bounded
above and below. Thus lim inf VQ.o(V, y)=0.

Now by Definition 1.3, o(V, y) is monotone decreasing in V, hence it
converges to zero. By the Integrability Condition, >.0 o(V1, y) dy is finite.
Hence by the Monotone Convergence Theorem, limVQ. >.0 o(V, y) dyQ 0.

Now if set S has vS \ V then by Definition 1.3, tr CJst(Y
(S)
y ) [ o(V, y).

By convergence of covariance, limVQ. supS: vS \ V |C
(S)/vS−C|=0, and

hence the second and third terms in the n-dimensional de Bruijn identity
(Theorem 2.3) converge to zero. Hence we deduce that by Theorem 2.3:

lim
VQ.

( sup
S: vS \ V

D(g (S) || f)) [
log e
2

( lim
VQ.
o(V, y))=0.
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Proof of Theorem 1.6. The IID case is much easier, since Pro-
position 3.3 simplifies. If we define rk for the score function of
W (k) ; 2k

i=1 X
(i)/`2kv+ZCy, it becomes:

tr(PTPJ(W (k)))−PTPJ(W (k+1)) \ const. ||Prk ||
2
G .

As in ref. 1, we deduce that tr(PTPJ(W (k))) converges monotonically to its
minimum, and this monotone convergence means that we only require the
condition that D(gm || f) is ever finite to ensure its convergence to zero.

As suggested in the introduction, such methods will also work in the
case of 2 (or indeed higher) dimensional lattices of independent random
variables, corresponding to 2D lattice models in the absence of sponta-
neous magnetisation. The key observation is that once again, we can
decompose any large enough set of random variables S into two smaller
sets S1, S2, each with comparable variance. Formally, the proof of
Theorem 1.5 continues in the same way. In a forthcoming paper (ref. 8), we
extend these techniques into the case of FKG systems of random variables,
and prove convergence in relative entropy in a weakly dependent case.
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